На рис. 10 показаны векторы скорости для трех различных положений частицы, движущейся вдоль кривой. В этом случае во время движения меняются не только направления, но и величины скорости, как показывает длина векторов.
Удовлетворяет ли это новое понятие скорости требованию, сформулированному для всех обобщений? Иначе говоря, сводится ли оно к прежнему понятию скорости, если кривая становится прямой? Очевидно, да. Касательная к прямой есть сама прямая. Вектор скорости лежит на линии движения, так же как это было в случае движущейся тележки или катящегося шара.
Следующий шаг — это введение изменения скорости частицы, движущейся вдоль кривой. Оно также может быть выполнено различными путями, из которых мы выберем самый простой и удобный. Рис. 10 показывал несколько векторов скоростей, представляющих движение вдоль кривой, в разных точках. Первые два из них можно опять нарисовать так, чтобы они имели общую исходную точку (рис. 11), что, как мы видели, возможно проделывать с векторами. Пунктирный вектор мы называем изменением скорости. Его начальная точка представляет собой конец первого вектора, а конечная точка — конец второго вектора. Этим и определено изменение скорости. Такое определение может, на первый взгляд, показаться искусственным и бессмысленным. Оно становится гораздо яснее в частном случае, в котором векторы 1 и 2 имеют одинаковое направление (рис. 12). Конечно, это означает переход к случаю прямолинейного движения. Если оба вектора имеют одну и ту же начальную точку, то пунктирный вектор опять связывает их конечные точки. Рис. 12 совпадает с рис. 6, а прежнее понятие оказывается частным случаем нового понятия. Следует заметить, что мы должны были разделить обе линии на рисунке, ибо иначе они совпали бы и стали бы неразличимыми.
Теперь мы должны сделать последний шаг в процессе обобщения. Это будет самой важной из всех догадок, которые мы сделали до сих пор. Связь между силой и изменением скорости должна быть установлена так, чтобы можно было найти путеводную нить, которая поможет нам понять общие проблемы движения.
Путь к объяснению движения вдоль прямой был весьма прост: внешняя сила вызывает изменение скорости; вектор силы имеет то же направление, что и изменение скорости. Но что теперь следует выбрать в качестве путеводной нити в случае криволинейного движения? Совершенно то же самое! Единственное различие в том, что изменение скорости понимается теперь в более общем смысле, чем раньше. Достаточно взглянуть на пунктирные векторы (см. рис. 11 и 12), чтобы все стало ясно. Если скорость известна для всех точек кривой, то направление силы в любой точке может быть найдено сразу же. Нужно нарисовать векторы скорости для двух моментов, отделенных очень короткими интервалами времени, а стало быть, соответствующих положениям, очень близким друг к другу. Вектор, проведенный из конца первого вектора к концу второго, показывает направление действующей силы. Но существенно, что оба вектора скорости должны быть отделены лишь «очень коротким» интервалом времени. Строгий анализ таких слов, как «очень близкий», «очень короткий», далеко не прост. Именно этот анализ привел Ньютона и Лейбница к открытию дифференциального исчисления.