Раньше, в случае световых волн и фотонов, было показано, что каждое положение, сформулированное на волновом языке, можно перевести на язык фотонов, или световых корпускул. То же самое справедливо и для электронных волн. Корпускулярный язык для равномерно движущихся электронов уже известен. Но каждое положение, выраженное корпускулярным языком, можно перевести на волновой язык, как это и было в случае фотонов. Две идеи привели к формулировке правил перевода. Одна идея — это аналогия между световыми волнами и электронными, или между фотонами и электронами. Мы применяем один и тот же метод перевода как для вещества, так и для света. Другую идею дает специальная теория относительности. Законы природы должны быть инвариантными относительно лоренцевых преобразований, а не классических. Обе эти идеи приводят к определению длины волны, соответствующей движущемуся электрону. Из теории следует, что электрон, движущийся, скажем, со скоростью 16 000 км/с, имеет длину волны, которую легко можно подсчитать и которая, оказывается, лежит в той же области, что и длина волны рентгеновских лучей. Отсюда мы заключаем далее, что если можно обнаружить волновой характер вещества, то это можно сделать экспериментально таким же путем, каким обнаруживаются волновые свойства рентгеновских лучей.
Вообразим пучок электронов, движущихся равномерно с заданной скоростью, или, если употреблять волновую терминологию, однородную электронную волну и предположим, что она падает на очень тонкий кристалл, играющий роль дифракционной решетки.
Дифракция электронных волн.
(Фотография Лориа и Клингера)
Расстояния между дифрагирующими элементами в кристалле настолько малы, что может происходить дифракция рентгеновских лучей. Можно ожидать аналогичного эффекта и для электронных волн, имеющих длину волны того же порядка. Фотографическая пластинка должна зарегистрировать эту дифракцию электронных волн, проходящих через тонкий слой кристалла. Эксперимент и в самом деле обнаруживает явление дифракции электронных волн, что, несомненно, является большим достижением теории. Подобие между дифракцией электронных волн и дифракцией рентгеновских лучей особенно заметно из сравнения их фотографий (см. рис. 80 и 85).
Мы знаем, что такая картина позволяет нам определить длину волны рентгеновских лучей. Это остается в силе и для электронных волн. Дифракционная картина дает длину этих волн, а полное количественное согласие теории и эксперимента блестяще подтверждает правильность наших рассуждений.
Эти результаты расширили и углубили наши прежние трудности. Это можно уяснить с помощью примера, аналогичного тому, что использован для световой волны. Электронный снаряд при очень малом отверстии будет отклоняться подобно световой волне. На фотографической пластинке обнаруживаются светлые и темные кольца.