Слабость стеклянных волокон подводит нас к вопросу о гриффитсовых трещинахи возвращает к профессору Инглису, которого мы покинули в главе1 в раздумье над тем, почему морские суда, обладающие по тогдашнимрасчетам большим запасом прочности, разламываются надвое в открытом океане.Инглис рассчитал, как разного рода вырезы, вроде люков на палубе, влияютна прочность крупных сооружений, в частности морских судов. Гриффитсу жепришла в голову блестящая мысль распространить расчет Инглиса на объектыгораздо меньших размеров, с надрезами почти молекулярной величины и стольмалой толщины, что их нельзя рассмотреть в оптический микроскоп.
Концентрация напряжений
Каковы бы ни были размеры надрезов-концентраторов, сама концентрация напряженийвсегда играет огромную роль. Как показал Инглис, всякое отверстие, любой острыйнадрез в материале создает в нем местное повышение напряжений. Этот местныйвсплеск напряжения, величину которого можно рассчитать, зависит только от формыотверстия и никак не связан с его размерами. Все инженеры знают о существованииконцентрации напряжений, но далеко не все ее чувствуют. Действительно,полагаясь лишь на здравый смысл, трудно понять, почему крохотное отверстиеослабляет материал в той же степени, что и большая дыра: это несколькопротиворечит привычным представлениям. Там, где есть малые отверстия и надрезы,материал начинает разрушаться от усталости очень скоро, но и при обычномстатическом разрушении, то есть под действием постоянных нагрузок, такиеотверстия и надрезы делают свое дело. Когда стекольщик режет стекло, он нестарается прорезать его на всю толщу листа, а делает лишь неглубокий надрез наповерхности, после чего по такой царапине стекло легко разламывается.Ослабляющее действие царапины практически не зависит от ее глубины: мелкаяцарапина действует ничуть не слабее глубокой, поскольку степень повышениянапряжений зависит лишь от остроты ее кромки.
Нетрудно нарисовать физическую картину того, что же в действительностипроисходит у таких надрезов, как трещины, особенно если рассматривать существодела на атомарном уровне. Обратившись к рис. 18, вы поймете, что при растяженииодиночная цепочка атомов испытывает равномерное напряжение, поэтому онаобладает теоретической прочностью (рис. 18, а).
Рис. 18. Возникновение концентрации напряжений у кончика трещины.
Взяв еще несколько таких же цепочек и расположив их так, чтобы они образоваликристалл (рис. 18, б), мы увидим, что пока еще ничто не мешает каждойцепочке в отдельности нести ее полное теоретическое напряжение. Предположим